Disentangling the complex evolutionary history of the Western Palearctic blue tits (*Cyanistes* spp.) – phylogenomic analyses suggest radiation by multiple colonization events and subsequent isolation

published in Molecular Ecology, 2015 doi: 10.1111/mec.13145

MARTIN STERVANDER,* JUAN CARLOS ILLERA,† LAURA KVIST,‡ PEDRO BARBOSA,* NAOMI P. KEEHNEN,*¹ PETER PRUISSCHER,*¹ STAFFAN BENSCH* and BENGT HANSSON*

*Molecular Ecology and Evolution Lab, Dept of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden, †Research Unit of Biodiversity (UO-CSIC-PA), Oviedo University, Campus of Mieres, Research Building, 5th Floor. C/ Gonzalo Gutiérrez Quirós, s/n, 33600 Mieres, Asturias, Spain, ‡Department of Biology, POB 3000, University of Oulu, 90014 Oulu, Finland, ¹Present affiliation: Population genetics, Dept of Zoology, Stockholm University, 106 91 Stockholm, Sweden

Correspondence: Martin Stervander, Fax: +46 46 222 4716; E-mail: martin.stervander@biol.lu.se

Appendix S1 – Supplementary methods

Phasing

We initially chose to infer haplotypes for all *Cyanistes* taxa as one dataset, despite these being more or less separated populations of varying size and demographic history, while haplotypes of the outgroup *Parus major* were inferred separately. However, a comparison gave at hand that inference of the whole dataset increased phase probabilities for both ingroup and outgroup. Most markers included individuals with partial sequences, and for computational reasons the alignments were then divided in blocks of full, or almost full, sequences only, and the part of the full alignment containing partial sequences, respectively.

We ran the phasing algorithm at least 1–3 times, with 100 burn-in iterations and 100 iterations (thinning interval 1), starting with randomized seeds. We used a model that allowed for recombination, using default values for the initial estimate of the recombination parameter ρ to 0.0004 (see Li and Stephens (2003)). Phases were considered true if the overall phase probability was >0.95.

RAD library preparation

We prepared paired-end restriction site-associated DNA (RAD) libraries following Baird *et al.* (2008) and Etter *et al.* (2011) with the following modifications. We considered no RNase A treatment necessary; DNA fragments were sheared with a Bioruptor Standard UCD-200 (Diagenode) and selected to a size range comprising 150–750 bp (length excluding adapters); PCR reactions were set up at 50 µl with 16 µl RAD library template running 16 cycles. Such protocol, with more library template and fewer cycles, leads to more P2–P2 fragments but fewer PCR clones. We used the restriction enzyme *SbfI* and multiplexed 16 samples per library; each library was then sequenced on one HiSeq 2000 (Illumina) channel at BGI, Hong Kong.

Supplementary results

- Table S1: Sample details and accession numbers.
- Table S2: Marker and primer details, PCR settings etc.
- Table S3: Nucleotide diversity within populations.
- Table S4: Summary of results from the Restriction site Associated DNA (RAD) sequencing.
- Table S5: Full dating results from five calibration sets, two taxon sets, and four genomic subsets.
- Table S6: Substitution models for the 20 Sanger sequencing markers.
- Table S7: Haplotype diversity within populations.
- Table S8: Theta within populations.

- Table S9: Summary of the dating analyses, highlighting the difference in estimated node ages between the partial and the full taxon set.
- Table S10: Summary of the dating analyses, highlighting the difference in estimated node ages between the five different calibration sets.
- Figure S1: Phylogenetic tree for the mitochondrial control region.
- Figure S2: Coalescence based species trees based on analyses of population samples of 18 nuclear Sanger sequence markers (but no mitochondrial markers).
- Figure S3: Bayesian Skyline Plots based on multi-locus Sangers sequence data, covering the full time period of demographic reconstructions.
- Figure S4: Bayesian Skyline Plots based on multi-locus Sangers sequence data, covering the last 500,000 years.
- Figure S5: Phylogenomic maximum likelihood tree of super-matrix STRICT.
- Figure S6: Cluster assignment using multi-dimensional scaling.

							Mitoc	hondrial					
		Region/						control				ENSGALT	ENSGALT
Sample	Taxon	country	Island/site	Year	Identifier	Ring no	Cyt b	region	ATP6AP2	BTF3L4	DNAJA2	01183	01658
CLP1	C. teneriffae palmensis	Canary Is	La Palma	2003	ST336	839579	KP759217	KP759244	KP758459	KP758077	KP758804	KP758915	KP759059
CLP2	C. teneriffae palmensis	Canary Is	La Palma	2003	ST338	839581	KP759226	KP759181	KP758882	KP758682	KP758977	KP759131	KP758504
CLP3	C. teneriffae palmensis	Canary Is	La Palma	2003	ST340	839583	KP759206	KP759193	KP758742	KP758125	KP758466	KP758750	KP758237
CLP4	C. teneriffae palmensis	Canary Is	La Palma	2009	ST1818	N636281	KP759260	KP759257	KP758636	KP758167	KP758629	KP758940	KP759032
CLP5	C. teneriffae palmensis	Canary Is	La Palma	2009	ST1819	N636280	KP759186	KP759183	KP758757	KP758644	KP758441	KP758869	KP759065
CEH1	C. teneriffae ombriosus	Canary Is	El Hierro	2003	ST347	839590	KP759167	KP759196	KP758482	KP758592	KP759066	KP758645	KP758744
CEH2	C. teneriffae ombriosus	Canary Is	El Hierro	2003	ST348	839591	KP759201	KP759224	KP758656	KP758032	KP759130	KP758427	KP758994
CEH3	C. teneriffae ombriosus	Canary Is	El Hierro	2003	ST349	839592	KP759241	KP759245	KP758943	KP758642	KP758322	KP759126	KP758557
CEH4	C. teneriffae ombriosus	Canary Is	El Hierro	2003	ST351	839594	KP759267	KP759238	KP758044	KP759091	KP759120	KP758194	KP758357
CEH5	C. teneriffae ombriosus	Canary Is	El Hierro	2003	ST352	839595	KP759194	KP759163	KP758641		KP758925	KP758558	KP758924
CLG1	C. teneriffae teneriffae	Canary Is	La Gomera	2004	ST699	L254946	KP759216	KP759175	KP758971	KP758318	KP759031	KP758881	KP758754
CLG2	C. teneriffae teneriffae	Canary Is	La Gomera	2004	ST701	L254945	KP759166	KP759239	KP758153	KP758688	KP758817	KP759081	KP758985
CLG3	C. teneriffae teneriffae	Canary Is	La Gomera	2007	ST1698	EX8256	KP759171		KP758917	KP758040	KP758823	KP758740	KP758843
CLG4b	C. teneriffae teneriffae	Canary Is	La Gomera	2009	ST1815	N861959	KP759165		KP758098		KP758991	KP758684	KP758548
CLG5	C. teneriffae teneriffae	Canary Is	La Gomera	2009	ST1817	N861962	KP759202	KP759255	KP758474	KP758732	KP758008	KP759023	KP758515
CTE1	C. teneriffae teneriffae	Canary Is	Tenerife	2003	ST329	839572	KP759247	KP759187	KP759141	KP758447	KP758529	KP758161	KP758711
CTE2	C. teneriffae teneriffae	Canary Is	Tenerife	2003	ST331	839574	KP759210	KP759243	KP758317	KP758326	KP759107	KP758303	KP758879
CTE3	C. teneriffae teneriffae	Canary Is	Tenerife	2003	ST332	839575	KP759192	KP759182	KP758330	KP758708	KP759044	KP758468	KP758987
CTE4	C. teneriffae teneriffae	Canary Is	Tenerife	2003	ST333	839576	KP759263	KP759266	KP758778	KP758533	KP758371	KP758597	KP758503
CTE5	C. teneriffae teneriffae	Canary Is	Tenerife	2008	ST1616	CN7596	KP759259	KP759261	KP758927	KP758846	KP758524	KP758234	KP759136
CGC1	C. teneriffae hedwigae	Canary Is	Gran Canaria	2003	ST514	L254921	KP759233	KP759168	KP759155	KP758417	KP758671	KP758856	KP758131
CGC2	C. teneriffae hedwigae	Canary Is	Gran Canaria	2003	ST516	AZ0640	KP759250	KP759212	KP758564	KP758051	KP758062	KP758471	KP758438
CGC3	C. teneriffae hedwigae	Canary Is	Gran Canaria	2003	ST517	L254923	KP759205	KP759219	KP758329	KP758462	KP758521	KP758964	KP758488
CGC4	C. teneriffae hedwigae	Canary Is	Gran Canaria	2004	ST697	L254932	KP759269	KP759240	KP758246	KP758298	KP758498	KP758345	KP758382
CGC5	C. teneriffae hedwigae	Canary Is	Gran Canaria	2004	ST698	L254931	KP759253	KP759248	KP758405	KP758132	KP758007	KP758965	KP758810
CFU1	C. teneritfae degener	Canary Is	Fuerteventura	2003	ST417	L254913	KP759251	KP759184	KP758526	KP758354	KP758109	KP758523	KP758277
CFU2	C. teneritfae degener	Canary Is	Fuerteventura	2003	ST420	L254917	KP759220	KP759215	KP758388	KP758978	KP758563	KP758745	KP758848
CFU3	C. tenerittae degener	Canary Is	Fuerteventura	2004	S1693	L254942	KP759176	KP759178	KP758393	KP758082	KP759012	KP758195	KP758842
CFU4	C. tenerittae degener	Canary Is	Fuerteventura	2004	S1695	L254937	KP759221	KP759211	KP758169	KP758934	short	KP759038	KP758497
CFU5	C. tenerittae degener	Canary Is	Fuerteventura	2004	S1696	L254940	KP759164	KP759225	KP758036	KP759092	KP758600	KP758385	KP758574
CLA1	C. tenerittae degener	Canary Is	Lanzarote	2004	S1688	L254943	KP759188	KP759169	KP758709	KP758480	KP758384	KP758190	KP758069
CLA2	C. tenerittae degener	Canary Is	Lanzarote	2004	S1689	L254936	KP759162	KP759265	KP759005	KP757997	KP758116	KP759115	KP758163
CLA3	C. tenerittae degener	Canary Is	Lanzarote	2004	S1690	334875	KP759179	KP759234	KP758803	KP758244	KP758650	KP758344	KP758055
CLA4	C. tenerittae degener	Canary Is	Lanzarote	2008	ST1649	CH7249	KP759262	KP759161	KP759085	KP758599	KP758391	KP758990	KP758643
CLA5	C. tenerittae degener	Canary Is	Lanzarote	2008	ST1651	CH7253	KP759275	KP759200	KP758707	KP758832	KP758324	KP759009	KP758675
	C. tenerittae ultramarinus	North Africa	Ceuta	2004	51898		KP759249	KP759246	KP759102		KP/59007	KP758587	KP759040
MCE2	C. tenerittae ultramarinus	North Africa	Ceuta	2004	S1899		KP759276	KP759190	KP758652	KP758455	short	KP758073	KP758387
MCE3	C. tenerittae ultramarinus	North Africa	Ceuta	2004	S1902		KP759271	KP759277	KP758958	KP758173	KP758895	KP758904	KP758293
MCE4	C. tenerittae ultramarinus	North Africa	Ceuta	2004	S1905		KP759231	KP759274	KP758364	KP758225	KP758765	KP758527	KP759061
MCE5	C. tenerittae ultramarinus	North Africa	Ceuta	2004	S1906		KP759170	KP759242	KP758872	KP758271	KP758402	KP758939	KP758920

Table S1, continued.

			Nucle	ear Sanger	markers									
	ENSGALT	ENSGALT	ENSGALT	ENSGALT	ENSGALT									RAD data
Sample	05087	11836	15724	16264	25924	LDH-B	OGDHL	PDCD6	RPL7	SPAG9	TGFb2	UBE3A	WDR12	(clean)
CLP1	KP758009	KP759055	KP758594	KP758808	KP758813	KP758035	KP758429	KP758432	KP758118	KP758028	KP758415	KP758539	KP758269	
CLP2	KP758204	KP758502	KP758795	KP758933	KP758530	KP758894	KP758544	KP758460	KP758660	KP758436	KP758694	KP758634	KP758258	
CLP3	KP758369	KP758245	KP758383	KP758079	KP758519	KP758615	KP758198	KP758284	KP758786	KP758905	KP758721	KP758452	KP758486	SRX879656
CLP4	KP758473	KP758885	KP758751	KP758160	KP758247	KP758581	KP758433	KP758179	KP758734	KP758945	KP759071	KP759150	KP758792	
CLP5	KP758332	KP758886	KP758372	KP758550	KP758265		KP758451	KP758796	KP758260	KP758240	KP758761	KP758833	short	
CEH1	KP758847	KP758360	KP758970	KP758076	KP758982	KP758508	KP758998	KP758936	KP758755	KP758252	KP758921	KP759068	KP758617	
CEH2	KP758716	KP758674	KP758413	KP759101	KP758370	KP758825	KP758389	KP758431	KP758214	KP758321	KP758487	KP759037	KP758249	SRX879658
CEH3	KP759058	KP758580	KP758352	KP758510	KP758864	KP758760	KP758865	KP759127	KP758023	KP758386	KP758845	KP758821	KP758454	
CEH4	KP758238	KP758787	KP758220	KP758710	KP758232	KP758094	KP758011	KP758589	KP758835	KP758702	KP758986	KP758791	KP758701	
CEH5	KP758513	KP758483	KP758178	KP758334	KP758426	KP758481	KP758492	KP758627	KP758010	KP759027	KP759087	KP758756	KP759073	
CLG1	KP758203	KP758876	KP759028	KP758610	KP758562	KP758399	KP758561	KP758443	KP758714	KP758794	KP759021	KP759074	KP758071	
CLG2	KP758880	KP758603	KP758122	KP758059	KP758632	KP759036	KP759056	KP758829	KP758718	KP758511	KP758255	KP758297	KP758262	SRX879659
CLG3	KP758449	KP758816	KP758748	KP758918	KP758661	KP758199	KP758719	KP759079	KP758067	KP758900	KP758693	KP758091	KP758568	
CLG4b	KP758543	KP758027	KP758646	KP758651	KP758573	KP759051	KP758836	KP758068	KP758229	KP758884	KP758572	KP758570	KP758053	
CLG5	KP758640	KP759097	KP758528	KP758221	KP758000	KP758928	KP758045	KP759019	KP759129	KP758175	KP758937	KP759143	KP758003	
CTE1	KP758948	KP759029	KP758026	KP758100	KP757999	KP758689	KP758086	KP758283	KP758299	KP759152	KP759033	KP758659	KP758654	
CTE2	KP758039	KP758584	KP759117	KP758875	KP758090	KP758667	KP758478	KP758087	KP758147	KP758901	KP758030	KP758509	KP758211	SRX879660
CTE3	KP758815	KP758309	KP758522	KP758565	KP759057	KP758896	KP758085	KP758538	KP759002	KP758259	KP758070	KP759062	KP758282	
CTE4	KP758281	KP758205	KP758713	KP758909	KP758859	KP758108	KP758961	KP758726	KP758499	KP758619	KP759053	KP758278	KP758806	
CTE5	KP758111	KP758690	KP758892	KP758637	KP758601	KP758374	KP759132	KP758477	KP759000	KP758738	KP759022	KP758285	KP758942	
CGC1	KP758906	KP758608	KP758144	KP758788	KP759017	KP758569	KP758362		KP759063	KP759083	KP758453	KP758780	KP758061	
CGC2	KP758741	KP758668	KP758931	KP758239	KP759148	KP759010	KP758653	KP758470	KP758762	KP758546	KP758192	KP758434	KP758554	SRX883380
CGC3	KP758117	KP758975	KP758731	KP759157	KP758311	KP758021	KP758423	KP758866	KP758450	KP758551	KP758871	KP758712	KP759145	
CGC4	KP758253	KP758197	KP758403	KP758201	KP758962	KP758595	KP758950	KP758250	KP758319	KP758749	KP758868	KP758542	KP758103	
CGC5	KP759125	KP758997	KP758302	KP758495	KP758578	KP758607	KP758893	KP758401	KP758410	KP758110	KP759043	KP758802	KP758294	
CFU1	KP758242	KP758141	KP758941	KP759100	KP759149	KP758049	KP758897	KP758857	KP758849	KP758902	KP759113	KP758621	KP758723	
CFU2	KP759123	KP758752	KP758930	KP759144	short	KP758809	KP758696	KP759111	KP758138	KP758156	KP758692	KP759069	KP759088	
CFU3	KP758016	KP758703	KP758729	KP758805	KP758270	KP758938	KP759138	KP758912	KP758807	KP758789	KP758724	KP759114	KP759020	
CFU4	KP758922	KP758852	KP758394	KP758669	KP758365	KP759076	KP758764	KP758566	KP758162	KP758699	KP759142	KP758323	KP759004	SRX879662
CFU5	KP758839	KP758022	KP758944	KP758779	KP758625	KP758968	KP758626	KP758926	KP758313	KP758257	KP758952	KP758844	KP758411	
CLA1	KP758469	KP758442	KP759078	KP758812	KP758491	KP758614	KP758670	KP759108	KP758899	KP758157	KP758379	KP758560	KP758514	SRX879663
CLA2	KP758200	KP758101	KP758874	KP758500	KP758146	KP758490	KP758308	KP758300	KP758736	KP758272	KP759039	KP758150	KP758730	
CLA3	KP758720	KP758191	KP758687	KP758630	KP758054	KP758209	KP758456	KP758484	KP758377	KP758923	KP759098	KP758678	KP758043	
CLA4	KP759016	KP758217	KP758623	KP758166	KP758149	KP758602	KP759049	KP758056	KP758215	KP758081	KP758695	KP758029	KP758342	
CLA5	KP758375	KP758525	KP758579	KP758919	KP759124	KP759015	KP758686	KP758112	KP758505	KP758339	KP759146	KP758152	KP758556	
MCE1	KP758819	KP758133	KP758288	KP758398	KP758673	KP758180	KP758628	KP758955	KP758210	KP758631	KP758559	KP758031	KP758867	
MCE2	KP758341	KP758883	KP758773	KP757996	KP758840	KP758889	KP758691	KP758066	KP758353	KP759080	short	KP759140	KP758664	SRX879664
MCE3	KP758328	KP758799	KP758392	KP758467	KP758037	KP758911	KP758213	KP758775	KP758251	KP758873	KP758350	KP758320	KP758181	
MCE4	KP758254	KP758414	KP758959	KP759110	KP758737	KP758611	KP758494	KP758493	KP758208	KP758706	KP758635	KP759060	KP758910	
MCE5	KP758126	KP758983		KP758768	KP758665	KP758018	KP758378	KP758767	KP758002	KP759147	KP758184	KP758605	KP759013	

Table S1, continued.

Table 5	1, continued.												
Sample	Taxon	Region/coun	t Island/site	lder	ntifier	Ring no	Cvt b	control region	ATP6AP2	BTE3I 4	DNA.IA2	ENSGALT 01183	ENSGALT 01658
ALG1	C teneriffae ultramarinus	Algeria	S of Algiers	2004 ST6	11		KP759209	JE755317	KP758182	KP758418	KP758333	KP758286	KP758107
ALG2	C. teneriffae ultramarinus	Algeria	S of Algiers	2004 ST6	514		KP759254	JF755318	KP758827	KP758227	KP759077	KP758783	KP759112
ALG3	C. teneriffae ultramarinus	Algeria	S of Algiers	2004 ST6	616		KP759237	JF755319	KP758770	KP758355	KP758075	KP758596	KP758416
ALG4	C teneriffae ultramarinus	Algeria	S of Algiers	2004 ST6	18		KP759268	JE755320	KP758638	KP758207	KP759137	KP758170	KP758464
ALG5	C. teneriffae ultramarinus	Algeria	S of Algiers	2004 ST6	513		KP759232	KP759173	KP758363	KP758412	KP759054	KP758390	KP758722
LIB1	C. teneriffae cvrenaicae	Libva	Close to Cyrene	2010 MAF	R7992		KP759204		KP758189	KP758759	KP758376	KP758743	KP758143
LIB2	C. teneriffae cvrenaicae	Libva	Close to Cyrene	2010 MAF	R7991		KP759258		KP758908	KP758739	KP758336	KP758033	KP758006
LIB3	C. teneriffae cvrenaicae	Libva	Close to Cyrene	2010 MAF	R7993		KP759256		KP758233	KP758083	KP758226	KP758531	KP758612
LIB4	C. teneriffae cvrenaicae	Libva	Close to Cyrene	2010 MAF	R8040		KC202349		KP759052	KP759047	KP758074	KP758421	KP758622
JDI1	C. caeruleus satunini	Jordan	Dibbeen	2005 ST9	36		KP759203	EF523808	KP758092	KP758358	KP758537	KP758877	KP758063
JDI2	C. caeruleus satunini	Jordan	Dibbeen	2005 ST9	38								
GRE1	C. caeruleus calamensis	Greece	Crete	2009 AI65	5608	AI65608	KP759197	KP759159	KP758222	KP759133	KP759134	KP759095	KP758001
GRE2	C. caeruleus calamensis	Greece	Crete	2009 090	925								
ECA1	C. caeruleus oligastrae	Spain	Cádiz	2008 ST1	716	EX8364		KP759227					
ECA1b	C. caeruleus oligastrae	Spain	Granada	2008 ST1	714	EX8366	KP759223		KP758850	KP758980	KP758231	KP758428	KP758325
ECA2	C. caeruleus oligastrae	Spain	Cádiz	2008 ST1	719	EX8351		KP759207					
ECA2b	C. caeruleus oligastrae	Spain	Granada	2008 ST1	717	EX8369	KP759270		KP759070	KP758828	KP758105	KP758733	
ECA3	C. caeruleus oligastrae	Spain	Cádiz	2008 ST1	720	EX8357	KP759230	KP759185				KP758095	
ECA3b	C. caeruleus oligastrae	Spain	Granada	2008 ST1	718	EX8370	KP759213		KP758851	KP758404	KP758834	KP758798	KP758154
ECA4	C. caeruleus oligastrae	Spain	Cádiz	2008 ST1	721	EX8356		KP759264				KP758890	
ECA4b	C. caeruleus oligastrae	Spain	Granada	2008 ST1	722	EX8371	KP759191		KP758772	KP759006	KP758988	KP758046	KP758128
ECA5	C. caeruleus oligastrae	Spain	Sevilla	2008 N98	9540	N989540							
GB1	C. caeruleus obscurus	Great Britain	Oxford	2008 P80	6943	P806943	KP759272		KP759156	KP758292	KP758588	KP758327	KP758439
GB2	C. caeruleus obscurus	Great Britain	Oxford	2008 R63	9492	R639492	KP759198	KP759218	KP758148	KP759034	KP758995	KP758863	KP758060
GB3	C. caeruleus obscurus	Great Britain	Oxford	2008 T17	7704	T177704	KP759229	KP759199	KP758088	KP758853	KP758340	KP758230	KP758746
GB4	C. caeruleus obscurus	Great Britain	Oxford	2008 V72	9932	V729932	KP759273	KP759214	KP758139	KP758979	KP758367	KP758609	
SRE1	C. caeruleus caeruleus	Sweden	Revinge	2006 B10	78	1EN80119	KP759228		KP758586	KP758898	KP758273	KP758381	KP758475
SRE2	C. caeruleus caeruleus	Sweden	Revinge	2006 B10	92	1EN80134	KP759235	KP759160	short	KP758946	KP758976	KP759116	KP758820
SRE3	C. caeruleus caeruleus	Sweden	Revinge	2006 B11	00	1EN80158	KP759222	KP759189	short	KP759128	KP758811	KP758261	KP758186
SRE4	C. caeruleus caeruleus	Sweden	Revinge	2006 B11	40	1EN80198	KP759208	KP759180	short	KP758193	KP758598	KP758624	KP758861
Ccya	C. cyanus flavipectus	Kazakhstan	Chokpak	2012 766			KP759278	KP759172	KP758337	KP758140	KP758291	KP758174	KP758516
Pmaj	Parus m. major	Sweden	Lake Kvismaren	2004 261		2KH17891		KP759236	KP758818	KP758567	KP758065	short	KP758248
Pmaj2	Parus m. major	Sweden	Lake Kvismaren	2004 312		2KH17842	KP759174	KP759195	KP758771	KP759067	KP758647	short	KP758657
Ppal	Poecile p. palustris	Sweden	Lake Kvismaren	2004 255		BZ 01510							
Phud	Poecile h. hudsonicus	Canada	Gogama	1995 HU1	1	1B-2348							
Pate	Periparus ater ater	Russia	Vladivostok	1994 1444	4								
Paab	Periparus ater abietum	Spain	Sierra Nevada	2012 PN3	373	PA7602							
Pasa	Periparus ater sardus	Corsica	C. de Bonifato	2006 556	7								
Patl	Periparus ater atlas	Morocco	Ifrane	2014 Pera	ate3								
Pruf	Periparus rufonuchalis	Nepal	Purano Marpha	1995 901	30								

Table S	1, continu	ed.												
Sample	ENSGALT 05087	ENSGALT 11836	ENSGALT 15724	ENSGALT 16264	ENSGALT 25924	LDH-B	OGDHL	PDCD6	RPL7	SPAG9	TGFb2	UBE3A	WDR12	
ALG1	KP759106	KP758159	KP758446	KP758089	KP758776	KP758576	KP758295	KP759025	KP758331	KP758777	KP758753	KP758407	KP758534	
ALG2	KP758397	KP759151	KP758241	KP758102	KP758801	KP758981	KP758316	KP759026	KP758855	KP758679	KP758676	KP758093	KP758064	
ALG3	KP758974	KP758448	KP758124	KP758130	KP758038	KP758793	KP758346	KP758096	KP758536	KP758935	KP758380	KP758014	KP758972	SRX879665
ALG4	KP759030	KP758571	KP758590	KP758395	KP758223	KP758017	KP758967	KP758685	KP758315	KP759011	KP758781	KP758348	KP758052	
ALG5	KP758727	KP758177	KP758347	KP758437	KP758575	KP758993	KP758790	KP758219	KP759084	KP758266	KP758472	KP758465	KP758176	
LIB1	KP758134	KP758814	KP758989	KP758774	KP759001	KP759050	KP758545	KP758279	KP758479	KP758243	KP759135	KP759153	KP758461	SRX879668
LIB2	KP758171	KP758725	KP758860	KP758440		KP758050		KP758747	KP758305	KP758947	KP758120	KP758264	KP758024	
LIB3	KP758034	KP758704	KP758954	KP758267	KP758216	KP758953	KP758633	KP759082	KP759099	KP758822	KP758280	KP758072	KP759064	
LIB4	KP758583	KP758137			KP758555	KP758992		KP758728	KP758826		KP759072	KP758276	KP758408	
JDI1	KP758830	KP758858	KP758769	KP758903	KP758155	KP758501	KP758097	KP758758	KP758275	KP758891	KP759089	KP758419	KP758966	
JDI2														SRX879669
GRE1	KP758996	KP758104	KP758041	KP758457	KP758929	KP758078	KP758127	KP759048	KP758582	KP759096	KP758114	KP758119	KP758476	
GRE2														SRX879670
ECA1	KP758957	KP758400								KP758553				
ECA1b		KP758356		KP758218	KP758135	KP759154	KP758677	KP759118	KP758914	KP758907	KP758984	KP758206	KP758463	
ECA2		KP758585												
ECA2b		KP758020	KP758681	KP758717	KP759090	KP758084	KP758359	KP758591	KP758658	KP758797	short	KP758662	short	
ECA3	KP758435	KP759035		KP759105	KP759042					KP759041		KP758145	KP759104	
ECA3b		KP758235	KP758224	KP759075	KP758445		KP758351	KP758314	KP759008	KP758618	KP758496	KP758196	KP758485	
ECA4	KP758212	KP758547		KP759158	KP758420					KP758396				
ECA4b		KP758960	KP759094	KP758115	KP758672	KP758489	KP759139	KP758616	KP759119	KP758304	KP759122	KP758541	KP758057	
ECA5														SRX883381
GB1	KP758785	KP758705	KP758307	KP758649	KP758406	KP758188	KP758296	KP758202	KP758256	KP758916	short	KP758158	KP758366	
GB2	KP758168	KP758005	KP758361	KP759018	KP758949	KP758552	KP758549	KP758854	KP758512	KP758025	KP758349	KP758424	KP758306	
GB3	KP758172	KP758683	KP758268	KP758606	KP758164	KP758042	KP758763	KP758784	KP758430	KP758312	short	KP758700	short	
GB4	KP758666	KP758099	KP758080	KP758715	KP758187	KP758185	KP758289	KP758301		KP758129	short	KP758999	KP758228	
SRE1	KP758887	KP758517	KP759093	KP758648	KP758620	KP758577	KP758800	KP758236	KP758013	short	short	KP758837	KP758963	
SRE2	KP758838	KP758106	KP758518	KP757995	KP759103		KP758520	KP758824	short	KP758604	short	KP758655	KP758951	
SRE3	KP758507	KP758310	KP758540	KP758663	KP759024	KP758136	KP758142	KP758593	KP758287	KP758735	short	KP758290	KP758613	
SRE4	KP758831	KP758165	KP758019	KP759121	KP759045	KP758015	KP759003	KP758888	KP758878	KP758048	KP759014	KP758870	short	SRX879680
Ccya	KP758183	KP758535	KP758373	KP758506	KP758338	KP758458	KP758698	KP758121	KP758151	KP759046	KP758956	KP758123	KP758932	SRX879681
Pmaj	KP758422	KP758058	KP758368	KP758425	KP759086	KP758782	KP758343	KP758004		short	KP758532	KP758335	KP758047	SRX879682
Pmaj2	KP758444	KP758274	KP758409	KP759109	KP757998	KP758766	KP758862	KP758639		short	KP758012	KP758969	KP758113	
Ppal														SRX879683
Phud														SRX883383
Pate														SRX879684
Paab														SRX879685
Pasa														SRX879686
Patl														SRX879687
Pruf														SRX879688

Locus	Marker	Gene position	Chrom. (Tgu)	Location (bp)	Primer	Primer sequence (5'–3')	Reference	Anneal. temp.	PCR cycles	Target length (intron, cds etc.)	Seq. primer
Nuclear ma	rkers										
ATP6AP	2 ENSGALT 26187	intron 7	1	6882519 6883313	F R	GGTGGGAATGCAGTAGTAGA CATGTTCCAGAGGTTGTAGG	Backström <i>et al</i> . 2008	63–53	20+20	721	F
UBE3A	UBE3A	intron 12	1	31837212 31837682	F R	AGAAACTACAGAATATGATGGTGGC CTGTCTGTGCCTGTTGTAAACTG	this study	60.5–55.5	10+25	468	R
LDHB	LDH-B	intron 3	1A	65040952 65041439	F R	GGAAGACAAACTAAAAGGAGAAATG ATGGA TTCCTCTGAAGCAGGTTGAGACGAC TCTC	Friesen <i>et al</i> . 1999	70–65	10+25	477	F
PDCD6	PDCD6	intron 4	2	94138715 94139392	F R	TGGAARTACATCACAGAYTGGC ACACAGCACTGAATAAARTCATCAA	this study	61–56	10+25	681	R
RPL7	RPL7	intron 3	2	124033847 124034480	F	TACCATAAGGAGTACAGRCACATG TAGGGYTCAACAATCCGCA	this study	60–55	10+25	645	F
TGFB2	TGFb2	intron 6	3	10256872 10257446	F R	GAAGCGTGCTCTAGATGCTG AGGCAGCAATTATCCTGCAC	Primmer et al. 2002	66–61	10+25	547	F
CRIPT	ENSGALT 16264	intron 3	3	18103287 18103966	F R	GCATTGACCTCAAAGAAGGC TTTATAGGCACATCCTTGAC	Backström et al. 2008	63–53	20+20	705	R
PRADC	ENSGALT 25924	intron 3	4_rand	4029445 4030096	F R	TTCATCCAGGACCAGATCGC GTGCTGTCCTGGATCATCTC	Backström et al. 2008	60–50	20+20	618	R
OGDHL	OGDHL	intron 21	6	8571613 8572304	F R	GCAGTTAGAATGTCTTTCCCTCA GGTGTCAGGAGGARCACAA	this study	60.5–55.5	10+25	720	R
ACADSE	BENSGALT 15724	intron 9	6	32012042 32012734	F R	AAATGTATTGAATGGATGGG CAGCTGGATATTTGAAGTTC	Backström et al. 2008	60–50	20+20	674	F
WDR12	WDR12	intron 9	7	21530614 21531143	F R	TGACTTCTCACACAGGCTGG CATGAGCAGCCAAGTCATACA	this study	60.5–55.5	10+25	557	F
BTF3L4	BTF3L4	intron 6	8	21805788 21806642	F R	GGAYAGTAAAGCACCAAAATCTGAA GTCCATGCCAGCTTCCAG	this study	60–55	10+25	867	F
DNAJA2	DNAJA2	intron 3	11	13887105 13887564	F R	ACAGTATCGCAATCCTTTTGAGA TCTGGCCACCACCTGAAC	this study	61–56	10+25	499	F
PSMD6	ENSGALT 11836	intron part 5	12	14512888 14513460	F R	GAAAAGATCTTGGGGGAGAG CTTGCGGAATGCAGTCAGAG	Backström et al. 2008	63–53	20+20	517	F
SPAG9	SPAG9	intron 35	18	9602824 9603142	F R	AYGCACAGCTYTGCTTCC CCRCTTATCACCAACATTGAT	this study	61–56	10+25	333	F
SBDS	ENSGALT 01658	intron 2	19	770102 770728	F R	ATTGAACGTGCTCACATGAG TTCCTCCACATCTTTCAGAC	Backström et al. 2008	63–53	20+20	629	R
POLDIP	ENSGALT 05087	intron 5	19	6981967 6982485	F R	CTGGCAAATCATGATGACAG CTGGATGGGCACTTGATCAG	Backström et al. 2008	63–53	20+20	591	R
OAZ1	ENSGALT 01183	intron 3	28	1722106 1722624	F R	CAGTCAAGGCTTACAGATGC ATCTCTGTTCTTGTGGAAAC	Backström et al. 2008	63–53	20+20	529	R

Table S2. Details of the genetic markers, primers, and PCR conditions used in this study.

	Locus	Marker	Gene position	Chrom. (Tgu)	Location (bp)	Primer	Primer sequence (5'–3')	Reference	Anneal. temp.	PCR cycles	Target length (intron, cds etc.)	Seq. primer
Mit	tochondrial m	narkers, am	plification				· · · ·		•	-	-	
	cytB	, ,	full cds	mt	L14838 H16057	ND5-Syl mtFNP	GGCCTAATCAARGCCTACYTAGG CCRAATGTTCTGGTTACAAA	A. J. Helbig unpubl. Fregin <i>et al</i> . 2009	55–45	20+20	1143	see below
	outP		partial	mt	L14995	mt-A1	GCCCCATCCAACATCTCAGCATGAT GAAACTTCCG	Dietzen <i>et al</i> . 2007	52	25	020	see
	суњ		cds		H15917	mt-Fs-H	TAGTTGGCCAATGATGATGAATGGG TGTTCTACTGGTT	Dietzen <i>et al</i> . 2007	55	30	920	below
	outP		partial	mt	L14990	L14841	AAAAAGCTTCCATCCAACATCTCAGC ATGATGAAA	Kocher <i>et al</i> . 1989	525 475	10,25	1045	see
	суњ		cds		H16065	H16065	TCATCTCCGGTTTACAAGAC	Helm-Bychowski & Cracraft 1993	52.5-47.5	10+25	1045	below
•	control regior	n	control region	mt	L16700 H590	L16700 H590	GAGATGAGGAGTATTCAACCGAC	Kvist <i>et al</i> . 1999 Kvist <i>et al</i> . 1999	53	30	577	H590
Mit	tochondrial m	narkers, seq	uencing									
	cvtB				L15320	L15320	TAYGTCCTACCATGAGGACAAATATC ATTCTAGG	Prager et al. 1993	45	30		
	cy ib				H15541	Cytb_seq_ H15541	CCCACCTTACCYTAAAACAG	this study	45	30		

Chrom. (Tgu), chromosome number in Zebra Finch *Taeniopygia guttata*; anneal. temp., annealing temperature (°C); seq. Primer, sequencing primer.

Table S3. Nucleotide diversity within populations, measured in 18 nuclear introns. The colour scheme pronounces differences by highlighting low values in blue, and high in red. n/a = measurement not possible to calculate.

Nucleotide diversity (π)	2 n					ENSGALT														
	avg (range)	Average	ATP6AP2	BTF3L4	DNAJA2	01183	01658	05087	11836	15724	16264	25924	LDH-B	OGDHL	PDCD6	RPL7	SPAG9	TGFb2	UBE3A	WDR12
Libya (N. Africa)	3,8 (3-4)	0.00046	0.00035	0.00200	0.00000	0.00048	0.00000	0.00000	0.00000	0.00000	0.00131	0.00000	0.00000	n/a	n/a	0.00160	0.00160	0.00000	0.00000	0.00000
La Palma (W. Canary Is)	4,9 (4-5)	0.00079	0.00160	0.00000	0.00178	0.00000	0.00085	0.00034	0.00091	0.00000	0.00000	0.00000	0.00000	0.00065	0.00403	0.00238	0.00000	0.00000	0.00076	0.00097
Central Canary Is	19,9 (18-21)	0.00193	0.00025	0.00451	0.00077	0.00034	0.00201	0.00586	0.00267	0.00008	0.00096	0.00333	0.00043	0.00053	0.00191	0.00102	0.00646	0.00097	0.00161	0.00096
El Hierro	4,9 (4-5)	0.00017	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00033	0.00000	0.00000	0.00083	0.00197	0.00000	0.00000	0.00000	0.00000
La Gomera	5,1 (3-6)	0.00098	0.00047	0.00000	0.00040	0.00000	0.00523	0.00028	0.00094	0.00000	0.00000	0.00190	0.00043	0.00065	0.00458	0.00000	0.00000	0.00000	0.00204	0.00064
Tenerife	5 (5-5)	0.00107	0.00028	0.00124	0.00187	0.00038	0.00000	0.00068	0.00078	0.00030	0.00028	0.00119	0.00100	0.00050	0.00318	0.00128	0.00487	0.00000	0.00114	0.00036
Gran Canaria	4,9 (3-5)	0.00077	0.00030	0.00109	0.00040	0.00090	0.00000	0.00224	0.00000	0.00000	0.00123	0.00000	0.00000	0.00084	0.00162	0.00264	0.00000	0.00102	0.00161	0.00000
E. Canary Is, NW Africa	19,6 (18-20)	0.00207	0.00194	0.00072	0.00052	0.00145	0.00235	0.00296	0.00103	0.00507	0.00213	0.00283	0.00193	0.00167	0.00140	0.00205	0.00373	0.00389	0.00061	0.00104
Fuerteventura	4,8 (4-5)	0.00154	0.00132	0.00000	0.00000	0.00081	0.00122	0.00095	0.00039	0.00415	0.00186	0.00081	0.00242	0.00256	0.00000	0.00335	0.00440	0.00219	0.00000	0.00120
Lanzarote	5 (5-5)	0.00058	0.00226	0.00000	0.00000	0.00000	0.00000	0.00000	0.00091	0.00208	0.00167	0.00000	0.00000	0.00028	0.00053	0.00000	0.00000	0.00228	0.00043	0.00000
Morocco	4,8 (4-5)	0.00220	0.00163	0.00000	0.00000	0.00000	0.00194	0.00330	0.00138	0.00416	0.00189	0.00285	0.00271	0.00274	0.00427	0.00173	0.00414	0.00451	0.00100	0.00132
Algeria	5 (5-5)	0.00237	0.00336	0.00289	0.00147	0.00342	0.00318	0.00516	0.00069	0.00481	0.00224	0.00235	0.00161	0.00050	0.00083	0.00263	0.00200	0.00382	0.00085	0.00084
Europe	12,6 (7-16)	0.00505	0.00771	0.00448	0.00174	0.00770	0.00455	0.00602	0.00430	0.00670	0.00131	0.00910	0.00278	0.00243	0.00879	0.00393	0.00842	0.00397	0.00316	0.00373
Sweden	3,6 (3-5)	0.00465	n/a	0.00508	0.00100	0.00790	0.00473	0.00519	0.00361	0.00415	0.00144	0.00694	0.00328	0.00165	0.01288	0.00248	0.00801	n/a	0.00397	0.00203
Great Britain	3,6 (3-4)	0.00519	0.00691	0.00630	0.00236	0.00798	0.00339	0.00581	0.00777	0.00948	0.00092	n/a	0.00254	0.00220	0.00650	0.00163	0.01001	n/a	0.00397	0.00527
Spain	4,4 (3-7)	0.00478	n/a	0.00257	0.00136	0.00844	0.00455	0.00849	0.00385	n/a	0.00082	0.00889	0.00301	0.00301	0.00776	0.00433	0.00703	0.00504	0.00275	0.00455

Table S4. Results from the Restriction site Associated DNA (RAD) sequencing for core samples. "Cleaned read pairs" refers to number of read pairs retained after de-multiplexing and filtering Stacks component process_radtags. "Clone-filtered read pairs" refers to number of read pairs retained after further removing PCR clones (within-individual copies in which both read1 and read2 are identical) using Stacks component clone_filter, thus representing the true sequencing depth. For detailed sample information, see Table S1.

			Cleaned	read pairs	Clone	-filtered read	d pairs
Sample	Site	Barcode	Library 1	Library 2*	Library 1	Library 2*	Combined
CEH2	CI, El Hierro	AACATGC	2797738	3499897	1548312	2712229	4260541
CFU4	CI, Fuerteventura	AATGCCT	7771797		4313960		
CGC2	CI, Gran Canaria	AGAGTCG	5325038		3020224		
CLG2	CI, La Gomera	CAATGAC	9312551		5153234		
CLP3	CI, La Palma	CAGACAT	5543324		3045934		
CLA1	CI, Lanzarote	CTCAGCT	638647	1759253	361432	1164323	1525755
CTE2	CI, Tenerife	CTTCTAG	2174946	3796468	1220375	2733561	3953936
ALG3	Algeria	GAGTGGA	5422017		3084908		
MCE2	Morocco, Ceuta	GCGGATA	7115603		4046892		
SRE4	Sweden, Revinge	GCTTGAT	6807039		3796007		
GRE1	Greece, Crete	GTTCAGC	9513442		5357445		
JDI2	Jordan, Dibbeen	TGGAGTT	3501104	4158679	1956034	3124029	5080063
Ccya	Kazakhstan, Chokpak	TGGTCAA	6506916		3613155		
Ppal	Sweden, Lake Kvismaren	TTATCCG	9814060		5378238		
Phud	Canada, Ontario	TTCCTTC	3669415	4929142	2062304	3762516	5824820
Pmaj	Sweden, Lake Kvismaren	TTCGAAG	814614	1441286	453824	880345	1334169
Pate	Russia, Vladivostok	AATGCCT		9381958		7446333	
Paab	Spain	AGAGTCG		7088604		5562194	
Pasa	Corsica, Cirque de Bonifato	CAATGAC		13474915		10415080	
Patl*	Morocco, Ifrane	AACATGC		7615064		6064212	
Pruf	Nepal, Purano Marpha	GTTCAGC		5419947		4218345	

*Sample Patl was run in a separate library (Library 3).

Table S5. Mean estimated node ages in million years (95% highest posterior density) for five different calibration sets and four subsets of 14 Kbp genomic RAD sequence data; three autosomal and one from the Z chromosome. The results are presented for analyses of the full taxon sets and partial taxon sets, from which samples of dubious genetic variation were removed.

									Calibrat	ion set ^a					
		Conomio	A (BER rel	., MSC rel.)		B (BER	, MSC)		C (BER, M	SC, CAN)		D (BER re	el., MSC)	E(N	ISC)
Clad	le	subset	full tax.set	partial tax.set ^b	fu	ll tax.set	partial tax.set ^b	fu	ll tax.set	partial tax.set ^b	fu	ll tax.set	partial tax.set ^b	full tax.set	partial tax.set ^b
AB	Cyanistes	aut. 1	5.4 (2.9-8.0)	4.2 (2.4-6.1)	6.3	(4.3-6.4)	4.9 (3.3-6.5)	3.7	(2.8-4.8)	3.8 (2.9-4.7)	6.2	(4.1-8.3)	4.8 (3.4-6.3)	6.0 (3.9-8.1)	4.7 (3.3-6.2)
		aut. 2	5.4 (2.8-8.3)	4.6 (2.4-6.9)	6.7	(4.8-8.7)	5.7 (4.2-7.5)	3.5	(2.8-4.3)	3.6 (3.0-4.4)	6.9	(4.9-9.3)	5.7 (4.2-7.3)	6.9 (5.1-9.1)	5.9 (4.4-7.5)
		aut. 3	5.3 (2.7-8.0)	4.5 (2.4-6.7)	6.4	(4.5-8.5)	5.5 (4.1-7.1)	4.0	(3.1-5.2)	4.2 (3.4-5.2)	6.5	(4.6-8.7)	5.7 (4.3-7.2)	6.4 (4.5-8.5)	5.7 (4.3-7.2)
		Z	6.2 (3.1-9.2)	4.9 (2.9-7.0)	7.1	(4.6-9.6)	5.7 (4.2-7.2)	4.4	(3.2-5.8)	4.5 (3.6-5.5)	7.1	(4.8-9.7)	6.0 (4.6-7.5)	7.1 (4.6-9.8)	6.0 (4.7-7.6)
A	C. caeruleus	aut. 1	3.2 (1.6-5.0)	2.8 (1.6-4.1)	3.8	(2.4-5.4)	3.3 (2.3-4.5)	2.5	(1.7-3.5)	2.7 (2.0-3.6)	3.7	(2.3-5.3)	3.2 (2.2-4.3)	3.6 (2.2-5.1)	3.1 (2.1-4.2)
	+ C. cyanus	aut. 2	3.0 (1.4-4.7)	2.8 (1.4-4.3)	3.7	(2.5-5.2)	3.5 (2.4-4.7)	2.3	(1.6-3.1)	2.5 (1.8-3.1)	3.8	(2.5-5.3)	3.5 (2.5-4.7)	3.8 (2.5-5.1)	3.6 (2.6-4.7)
		aut. 3	3.9 (2.0-6.0)	3.5 (1.9-5.3)	4.7	(3.2-6.5)	4.3 (3.1-5.5)	3.1	(2.2-4.0)	3.4 (2.6-4.2)	4.8	(3.2-6.6)	4.4 (3.3-5.7)	4.8 (3.2-6.5)	4.4 (3.3-5.6)
		Z	3.6 (1.6-5.8)	3.1 (1.7-4.5)	4.2	(2.5-6.3)	3.6 (2.6-4.8)	2.8	(1.7-4.0)	3.0 (2.2-3.8)	4.2	(2.5-6.2)	3.7 (2.7-4.8)	4.2 (2.4-6.3)	3.8 (2.7-4.9)
A1	C. caeruleus	aut. 1	2.8 (1.5-4.3)	2.6 (1.4-3.7)	3.3	(2.0-4.7)	3.0 (2.0-4.0)	2.2	(1.4-3.1)	2.4 (1.8-3.1)	3.3	(2.0-4.7)	2.9 (2.0-3.9)	3.2 (1.9-4.5)	2.8 (1.9-3.8)
		aut. 2	2.8 (1.4-4.4)	2.6 (1.3-4.0)	3.5	(2.3-4.8)	3.3 (2.3-4.4)	2.1	(1.4-2.9)	2.3 (1.7-3.0)	3.5	(2.4-4.9)	3.3 (2.3-4.3)	3.5 (2.3-4.7)	3.4 (2.4-4.4)
		aut. 3	3.3 (1.7-5.1)	3.1 (1.7-4.7)	4.1	(2.8-5.6)	3.7 (2.6-4.8)	2.7	(1.9-3.6)	3.0 (2.3-3.8)	4.2	(2.7-5.7)	3.9 (2.9-5.0)	4.1 (2.7-5.6)	3.9 (2.9-5.0)
		Z	2.7 (1.2-4.4)	2.4 (1.3-3.6)	3.2	(1.8-4.7)	2.8 (1.9-3.7)	2.2	(1.2-3.1)	2.3 (1.6-3.1)	3.2	(1.8-4.7)	2.9 (2.1-3.8)	3.2 (1.7-4.8)	2.9 (2.1-3.8)
В	C. teneriffae	aut. 1	4.8 (2.6-7.1)	3.7 (2.1-5.3)	5.6	(3.9-7.5)	4.3 (3.0-5.8)	3.1	(2.6-3.5)	3.1 (2.6-3.5)	5.5	(3.8-7.5)	4.1 (3.0-5.5)	5.3 (3.6-7.3)	4.1 (2.9-5.5)
		aut. 2	5.2 (2.7-7.9)	4.3 (2.3-6.5)	6.3	(4.6-8.3)	5.4 (4.0-7.0)	3.2	(2.8-3.5)	3.2 (2.8-3.5)	6.6	(4.6-8.8)	5.4 (4.0-7.0)	6.5 (4.7-8.5)	5.5 (4.1-7.1)
		aut. 3	4.6 (2.4-7.0)	3.8 (2.1-5.7)	5.6	(3.9–7.3)	4.6 (3.3-5.9)	3.2	(2.8-3.5)	3.3 (2.9-3.5)	5.7	(4.1-7.7)	4.8 (3.6-6.2)	5.6 (3.9-7.5)	4.8 (3.6-6.2)
		Z	4.9 (2.6-7.5)	3.8 (2.2-5.5)	5.7	(3.8-7.8)	4.4 (3.3-5.7)	3.1	(2.6-3.5)	3.2 (2.8-3.5)	5.7	(3.8-7.7)	4.7 (3.4-5.8)	5.7 (3.7-7.9)	4.7 (3.5-5.9)
B1 ^c	C. t. palmensis +	aut. 1	3.8 (1.9-5.9)	3.0 (1.6-4.6)	4.4	(2.5-6.4)	3.5 (2.2-4.9)	2.8	(1.9-3.5)	2.8 (2.1-3.5)	4.4	(2.6-6.5)	3.5 (2.3-4.9)	4.3 (2.3-6.3)	3.4 (2.2-4.6)
	C. t. cyrenaicae	aut. 2	4.8 (2.4-7.3)	4.0 (2.1-6.1)	5.8	(3.8–7.7)	4.9 (3.5-6.5)	3.1	(2.4-3.5)	3.1 (2.6-3.5)	6.0	(4.2-7.8)	5.0 (3.6-6.6)	5.9 (4.1-7.9)	5.1 (3.6-6.8)
		aut. 3	3.2 (1.6-4.9)	2.2 (1.1-3.4)	3.9	(2.7-5.2)	2.7 (1.9-3.7)	2.7	(1.8-3.6)	2.3 (1.6-3.0)	4.0	(2.8-5.3)	2.8 (2.0-3.7)	4.0 (2.7-5.3)	2.8 (2.0-3.8)
		Z	4.0 (1.9-6.4)	3.4 (1.9-5.0)	4.7	(2.8-6.8)	3.9 (2.8-5.2)	2.8	(1.9-3.5)	3.0 (2.4-3.5)	4.8	(2.7-6.9)	4.1 (3.0-5.3)	4.6 (2.9-6.7)	4.1 (2.9-5.3)
B1b	C. teneriffae excl.	aut. 1	4.4 (2.4-6.5)	3.2 (1.8-4.7)	5.1	(3.5–6.7)	3.7 (2.5-5.0)	2.8	(2.2-3.4)	2.7 (2.2-3.3)	5.0	(3.5–6.8)	3.6 (2.6-4.8)	4.8 (3.3-6.7)	3.6 (2.5-4.8)
	C. t. palmensis	aut. 2	5.0 (2.6-7.6)	4.2 (2.2-6.3)	6.1	(4.4-8.0)	5.2 (3.7-6.8)	3.1	(2.6-3.5)	3.1 (2.7-3.5)	6.4	(4.5-8.6)	5.2 (3.9-6.7)	6.3 (4.5-8.2)	5.3 (3.9-6.8)
		aut. 3	4.3 (2.2-6.6)	3.6 (2.0-5.4)	5.2	(3.6-6.9)	4.3 (3.1-5.6)	3.0	(2.5-3.5)	3.1 (2.6-3.4)	5.3	(3.8-7.2)	4.5 (3.3-5.7)	5.3 (3.7-7)	4.5 (3.3-5.8)
		Z	4.5 (2.3-6.9)	3.5 (2.0-5.1)	5.2	(3.4-7.1)	4.0 (2.9-5.2)	2.9	(2.3-3.4)	2.9 (2.4-3.4)	5.3	(3.5-7.1)	4.2 (3.2-5.4)	5.3 (3.5-7.4)	4.3 (3.1-5.4)

B2	C. teneriffae,	aut. 1	3.7 (2.0-5.5)	2.4 (1.4-3.5)	4.4	(3.1-5.9)	2.8 (1.9-3.8)	2.4	(1.8-2.9)	2.0 (1.5-2.6)	4.3	(3.0-5.9)	2.7 (1.8-3.6)	4.2 (2.8-5.7)	2.7 (1.8-3.6)
	clades B3 + B4	aut. 2	4.2 (2.2-6.5)	3.3 (1.7-5.0)	5.1	(3.7-6.8)	4.1 (2.8-5.4)	2.6	(2.1-3.2)	2.5 (1.9-3.0)	5.4	(3.7-7.1)	4.1 (3.0-5.3)	5.3 (3.8-7.0)	4.1 (3.0-5.5)
	(see below)	aut. 3	3.6 (1.8-5.4)	2.8 (1.5-4.3)	4.4	(3.1-5.8)	3.4 (2.4-4.5)	2.5	(2.0-3.0)	2.5 (2.0-3.0)	4.5	(3.1-6.1)	3.5 (2.6-4.6)	4.4 (3.1-5.9)	3.5 (2.6-4.6)
		Z	3.4 (1.8-5.2)	2.1 (1.2-3.1)	4.0	(2.7-5.5)	2.5 (1.7-3.2)	2.2	(1.6-2.8)	1.8 (1.3-2.2)	4.0	(2.7-5.4)	2.6 (1.9-3.3)	4.0 (2.6-5.6)	2.6 (1.9-3.3)
В3	C. teneriffae,	aut. 1	2.7 (1.4-4.2)	1.6 (0.8-2.4)	3.2	(2.0-4.5)	1.8 (1.1-2.6)	1.1	(1.0-1.2)	1.1 (0.9-1.2)	3.2	(1.9-4.4)	1.8 (1.1-2.5)	3.1 (1.9-4.4)	1.8 (1.1-2.5)
	central Canary	aut. 2	3.0 (1.5-4.8)	2.2 (1.1-3.5)	3.7	(2.5-5.0)	2.7 (1.7-3.9)	1.1	(1.0-1.2)	1.1 (1.0-1.2)	3.9	(2.5-5.2)	2.8 (1.8-3.8)	3.8 (2.6-5.2)	2.8 (1.9-3.8)
	Islands	aut. 3	2.4 (1.2-3.8)	1.5 (0.7-2.4)	2.9	(1.8-4.0)	1.8 (1.1-2.6)	1.1	(1.0-1.2)	1.1 (0.9-1.2)	3.0	(1.8-4.1)	1.9 (1.2-2.7)	2.9 (1.9-4.1)	1.9 (1.2-2.7)
		Z	2.6 (1.3-4.0)	1.7 (0.9-2.5)	3.0	(1.9-4.3)	1.9 (1.3-2.6)	1.1	(1.0-1.2)	1.1 (1.0-1.2)	3.1	(2.0-4.3)	2.0 (1.4-2.7)	3.1 (1.9-4.3)	2.0 (1.5-2.7)
B4	C. teneriffae,	aut. 1	3.3 (1.7-4.8)	1.6 (0.8-2.4)	3.8	(2.5-5.2)	1.9 (1.2-2.6)	2.1	(1.5-2.7)	1.4 (1.0-1.9)	3.8	(2.4-5.2)	1.8 (1.2-2.5)	3.6 (2.3-5.1)	1.8 (1.1-2.5)
	eastern Canary	aut. 2	3.5 (1.8-5.5)	2.3 (1.1-3.6)	4.3	(3.0-5.7)	2.9 (1.9-3.9)	2.2	(1.7-2.8)	1.8 (1.3-2.4)	4.5	(3.1-6.0)	2.8 (2.0-3.9)	4.4 (3.1-5.9)	2.9 (2.0-3.9)
	Islands, north-	aut. 3	3.2 (1.7-4.9)	2.2 (1.1-3.4)	3.8	(2.7-5.2)	2.6 (1.8-3.5)	2.3	(1.7-2.8)	2.0 (1.5-2.5)	3.9	(2.7-5.4)	2.8 (2.0-3.7)	3.9 (2.6-5.1)	2.7 (2.0-3.7)
	western Africa	Z	2.8 (1.4-4.3)	1.5 (0.8-2.2)	3.2	(2.1-4.5)	1.7 (1.1-2.3)	1.8	(1.3-2.4)	1.3 (0.9-1.7)	3.3	(2.2-4.5)	1.8 (1.2-2.4)	3.3 (2.1-4.6)	1.8 (1.3-2.4)

NOTE.— rel. = relaxed; aut. = autosomal, Z = Z chromosome, tax.set = taxon set

^a Calibration points were:

BER = Beringia: Nearctic/Holarctic split within Poecile at 5.4-5.5 My or rel. = relaxed at 4.8-14.0 My;

MSC = Messinian Salinity Crisis: African/European split within Periparus ater at 5.32-5.33 My or rel. = relaxed at 0-5.96 My;

CAN = Canary Islands volcanic age at El Hierro 0–1.2 My and La Palma 0–3.5 My.

^b The partial taxon set excludes individuals from Lanzarote and Tenerife, owing to high within-individual genetic variation (see text)

^c C. t. palmensis (La Palma) and C. t. cyrenaicae (Libya) enforced as a monophyletic clade according to species tree analyses (see text).

Marker	Substitution model
Nuclear	
ATP6AP2	HKY+Invariant
BTF3L4	HKY+Invariant
DNAJA2	HKY
ENSGALT0000001183	HKY+Invariant
ENSGALT0000001658	HKY+Gamma
ENSGALT0000005087	K80+Invariant
ENSGALT00000011836	HKY
ENSGALT00000015724	HKY+Invariant+Gamma
ENSGALT00000016264	HKY+Invariant
ENSGALT00000025924	K80+Invariant
LDH-B	HKY
OGDHL	HKY+Invariant
PDCD6	HKY
RPL7	HKY+Invariant
SPAG9	F81+Invariant
TGFb2	HKY+Invariant
UBE3A	HKY
WDR12	HKY
Mitochondrial	
Control region	HKY+Invariant
Cytochrome b	HKY+Invariant+Gamma

 Table S6.
 Substitution models selected according to the Bayesian Information Criterion, using jModelTest.

Table S7. Haplotype diversity within populations, measured in 18 nuclear introns. The colour scheme pronounces differences by highlighting low values in blue, and high in red. n/a = measurement not possible to calculate.

Haplotype diversity (Hd)	2 n					ENSGALT														
	avg (range)	Average	ATP6AP2	BTF3L4	DNAJA2	01183	01658	05087	11836	15724	16264	25924	LDH-B	OGDHL	PDCD6	RPL7	SPAG9	TGFb2	UBE3A	WDR12
Libya (N. Africa)	3,8 (3-4)	0.175	0.250	0.429	0.000	0.250	0.000	0.000	0.000	0.000	0.733	0.000	0.000	n/a	n/a	0.607	0.533	0.000	0.000	0.000
La Palma (W. Canary Is)	4,9 (4-5)	0.299	0.511	0.000	0.711	0.000	0.533	0.200	0.467	0.000	0.000	0.000	0.000	0.467	0.778	0.822	0.000	0.000	0.356	0.536
Central Canary Is	19,9 (18-21)	0.440	0.162	0.763	0.233	0.177	0.388	0.769	0.559	0.056	0.556	0.717	0.203	0.351	0.354	0.312	0.749	0.491	0.595	0.491
El Hierro	4,9 (4-5)	0.075	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.200	0.000	0.000	0.511	0.644	0.000	0.000	0.000	0.000
La Gomera	5,1 (3-6)	0.287	0.333	0.000	0.200	0.000	0.733	0.167	0.485	0.000	0.000	0.742	0.200	0.467	0.800	0.000	0.000	0.000	0.682	0.356
Tenerife	5 (5-5)	0.373	0.200	0.711	0.467	0.200	0.000	0.378	0.378	0.200	0.200	0.644	0.467	0.356	0.356	0.689	0.733	0.000	0.533	0.200
Gran Canaria	4,9 (3-5)	0.315	0.200	0.467	0.200	0.467	0.000	0.644	0.000	0.000	0.644	0.000	0.000	0.533	0.733	0.733	0.000	0.511	0.533	0.000
E. Canary Is, NW Africa	19,6 (18-20)	0.550	0.690	0.243	0.252	0.317	0.684	0.679	0.497	0.848	0.796	0.738	0.510	0.528	0.235	0.460	0.763	0.885	0.273	0.500
Fuerteventura	4,8 (4-5)	0.403	0.622	0.000	0.000	0.200	0.250	0.511	0.200	0.467	0.644	0.250	0.600	0.778	0.000	0.644	0.689	0.800	0.000	0.600
Lanzarote	5 (5-5)	0.172	0.533	0.000	0.000	0.000	0.000	0.000	0.467	0.200	0.511	0.000	0.000	0.200	0.356	0.000	0.000	0.622	0.200	0.000
Morocco	4,8 (4-5)	0.571	0.644	0.000	0.000	0.000	0.644	0.733	0.622	0.750	0.844	0.778	0.511	0.644	0.733	0.511	0.889	0.857	0.467	0.644
Algeria	5 (5-5)	0.663	0.844	0.911	0.644	0.800	0.778	0.956	0.356	0.844	0.844	0.867	0.511	0.356	0.511	0.600	0.511	0.756	0.378	0.467
Europe	12,6 (7-16)	0.820	0.956	0.746	0.587	0.935	0.859	0.818	0.747	0.939	0.598	0.965	0.757	0.820	0.954	0.692	0.943	0.802	0.782	0.859
Sweden	3,6 (3-5)	0.809	n/a	0.786	0.464	1.000	0.929	0.929	0.857	0.733	0.733	1.000	0.800	0.643	0.978	0.533	0.933	n/a	0.893	0.733
Great Britain	3,6 (3-4)	0.836	0.929	0.929	0.643	0.964	0.733	0.679	0.867	0.893	0.600	n/a	0.786	0.857	0.964	0.600	1.000	n/a	0.929	1.000
Spain	4,4 (3-7)	0.803	n/a	0.464	0.607	0.955	0.933	1.000	0.682	n/a	0.536	0.909	0.867	0.929	0.964	0.643	0.868	0.867	0.733	0.893

Table S8. Theta within populations, measured in 18 nuclear introns. The colour scheme pronounces differences by highlighting low values in blue, and high in red. n/a = measurement not possible to calculate.

θ	2 n					ENSGALT														
	avg (range)	Average	ATP6AP2	BTF3L4	DNAJA2	01183	01658	05087	11836	15724	16264	25924	LDH-B	OGDHL	PDCD6	RPL7	SPAG9	TGFb2	UBE3A	WDR12
Libya (N. Africa)	3,8 (3-4)	0.00117	0.00054	0.00180		0.00074					0.00132			n/a	n/a	0.00128	0.00132			
La Palma (W. Canary Is)	4,9 (4-5)	0.00128	0.00150		0.00142		0.00056	0.00060	0.00069					0.00050	0.00393	0.00219			0.00076	0.00069
Central Canary Is	19,9 (18-21)	0.00192	0.00108	0.00281	0.00188	0.00045	0.00224	0.00437	0.00226	0.00036	0.00167	0.00302	0.00052	0.00132	0.00202	0.00146	0.00349	0.00129	0.00298	0.00127
El Hierro	4,9 (4-5)	0.00109										0.00057			0.00105	0.00165				
La Gomera	5,1 (3-6)	0.00131	0.00062		0.00071		0.00337	0.00057	0.00064			0.00215	0.00076	0.00050	0.00303				0.00142	0.00063
Tenerife	5 (5-5)	0.00114	0.00050	0.00082	0.00142	0.00068		0.00121	0.00137	0.00052	0.00050	0.00115	0.00076	0.00050	0.00316	0.00110	0.00318		0.00076	0.00063
Gran Canaria	4,9 (3-5)	0.00133	0.00052	0.00082	0.00071	0.00068		0.00181			0.00150			0.00149	0.00158	0.00200		0.00129	0.00227	
E. Canary Is, NW Africa	19,6 (18-20)	0.00220	0.00209	0.00129	0.00097	0.00190	0.00231	0.00394	0.00091	0.00303	0.00167	0.00310	0.00301	0.00198	0.00201	0.00186	0.00282	0.00392	0.00151	0.00127
Fuerteventura	4,8 (4-5)	0.00184	0.00105			0.00143	0.00188	0.00121	0.00069	0.00315	0.00150	0.00125	0.00302	0.00198		0.00220	0.00318	0.00194		0.00127
Lanzarote	5 (5-5)	0.00139	0.00150						0.00069	0.00367	0.00150			0.00050	0.00053			0.00194	0.00076	
Morocco	4,8 (4-5)	0.00268	0.00250				0.00225	0.00338	0.00137	0.00492	0.00201	0.00287	0.00302	0.00248	0.00302	0.00184	0.00425	0.00423	0.00076	0.00127
Algeria	5 (5-5)	0.00229	0.00300	0.00246	0.00142	0.00272	0.00337	0.00592	0.00069	0.00367	0.00251	0.00230	0.00227	0.00050	0.00105	0.00186	0.00212	0.00323	0.00151	0.00064
Europe	12,6 (7-16)	0.00580	0.00755	0.00572	0.00412	0.00765	0.00406	0.00521	0.00686	0.00600	0.00206	0.00847	0.00328	0.00396	0.01454	0.00528	0.00682	0.00387	0.00324	0.00577
Sweden	3,6 (3-5)	0.00482	n/a	0.00594	0.00155	0.00742	0.00432	0.00659	0.00449	0.00390	0.00135	0.00712	0.00374	0.00216	0.01430	0.00204	0.00658	n/a	0.00412	0.00157
Great Britain	3,6 (3-4)	0.00513	0.00599	0.00660	0.00309	0.00892	0.00348	0.00461	0.00680	0.00801	0.00067	n/a	0.00284	0.00270	0.00743	0.00215	0.00921	n/a	0.00412	0.00550
Spain	4,4 (3-7)	0.00503	n/a	0.00396	0.00155	0.00766	0.00498	0.00930	0.00514	n/a	0.00059	0.00808	0.00283	0.00325	0.00814	0.00543	0.00755	0.00485	0.00227	0.00485

Table S9. Average difference, based on four genomic subsets, in estimated node ages for the partial taxon set (excluding individuals from Lanzarote and Tenerife, owing to high within-individual genetic variation) compared to the full taxon set. The colour scheme pronounces differences by highlighting low values in blue, and high in red.

	Calibration set ^a												
Clade	А	В	С	D	Е								
А	12.7%	12.5%	-6.9%	11.5%	10.6%								
A1	9.4%	9.6%	-8.4%	9.0%	7.9%								
AB	21.9%	21.7%	-3.3%	20.5%	19.1%								
В	25.2%	24.2%	-0.9%	24.0%	21.7%								
B1 ^b	27.6%	26.9%	2.2%	26.4%	23.7%								
B1b	27.2%	27.0%	0.2%	26.1%	23.5%								
B2	43.4%	43.2%	13.1%	43.1%	41.3%								
B3	54.5%	56.7%	1.0%	55.1%	52.4%								
B4	74.3%	71.2%	32.4%	74.5%	69.0%								
Overall	32.9%	32.6%	3.3%	32.3%	29.9%								

^a Calibration sets were A (BER rel., MSC rel.); B (BER, MSC); C (BER, MSC, CAN); D (BER rel., MSC); E (MSC), where calibration points were:

BER = Beringia: Nearctic/Holarctic split within Poecile at 5.4-5.5 My or rel. = relaxed at 4.8-14.0 My;

MSC = Messinian Salinity Crisis: African/European split within *Periparus ater* at 5.32–5.33 My or rel. = relaxed at 0–5.96 My;

CAN = Canary Islands volcanic age at El Hierro 0–1.2 My and La Palma 0–3.5 My.

^b C. t. palmensis (La Palma) and C. t. cyrenaicae (Libya) enforced as a monophyletic clade according to species tree analyses (see text).

Table S10. Average difference, based on four genomic subsets, in estimated node ages between different calibration sets, calculated for the partial taxon set (excluding individuals from Lanzarote and Tenerife, owing to high within-individual genetic variation). The colour scheme pronounces differences by highlighting low values in blue, and high in red.

	Average difference beteen calibration sets ^a (My)													
Clade	B vs.A	C vs . A	D vs. A	E vs. A	C vs . B	D vs.B	E vs.B	D vs.C	E vs.C	E vs. D				
AB	20.2%	-5.4%	21.9%	21.7%	-21.2%	1.5%	1.2%	29.1%	28.9%	-0.2%				
А	19.9%	-6.3%	21.6%	21.4%	-21.6%	1.5%	1.2%	29.9%	29.8%	-0.2%				
A1	19.4%	-11.6%	21.7%	21.9%	-25.9%	1.9%	2.1%	38.5%	38.9%	0.2%				
В	19.4%	-18.1%	21.2%	21.6%	-31.3%	1.5%	1.8%	48.6%	49.2%	0.3%				
B1 ^b	18.7%	-18.1%	21.1%	21.5%	-30.8%	2.1%	2.4%	48.5%	49.0%	0.3%				
B1b	19.0%	-9.5%	22.0%	21.9%	-23.9%	2.6%	2.4%	36.3%	36.3%	-0.1%				
B2	19.4%	-17.6%	21.3%	21.0%	-30.9%	1.6%	1.4%	47.6%	47.3%	-0.2%				
B3	17.7%	-35.9%	22.0%	21.7%	-45.3%	3.6%	3.4%	94.6%	94.3%	-0.2%				
B4	20.4%	-14.0%	20.7%	21.6%	-28.4%	0.3%	1.0%	40.7%	41.9%	0.7%				
Overall	19.3%	-15.2%	21.5%	21.6%	-28.8%	1.8%	1.9%	46.0%	46.2%	0.1%				

^a Calibration sets were A (BER rel., MSC rel.); B (BER, MSC); C (BER, MSC, CAN); D (BER rel., MSC); E (MSC), where calibration points were:

BER = Beringia: Nearctic/Holarctic split within Poecile at 5.4–5.5 My or rel. = relaxed at 4.8–14.0 My;

MSC = Messinian Salinity Crisis: African/European split within *Periparus ater* at 5.32–5.33 My or rel. = relaxed at 0–5.96 My;

CAN = Canary Islands volcanic age at El Hierro 0–1.2 My and La Palma 0–3.5 My.

^b C. t. palmensis (La Palma) and C. t. cyrenaicae (Libya) enforced as a monophyletic clade according to species tree analyses (see text).

Figure S1. Phylogenetic tree for the mitochondrial control region, co-estimated with the species tree (Figure 2a) using *BEAST. Posterior probability >0.6 displayed at nodes; clades referred to in the text; sample names listed in Table S1. Populations: CLG = La Gomera, CTE = Tenerife, CGC = Gran Canaria, CEH = EI Hierro, CLA = Lanzarote, CFU = Fuerteventura, MCE = Morocco, ALG = Algeria, LIB = Libya, CLP = La

Palma, GB = Great Britain, GRE = Greece, SRE = Sweden, ECA = Spain, JDI = Jordan, Ccya = *Cyanistes cyanus*.

Figure S2. Coalescence based species trees of blue tits *Cyanistes* sp. based on analyses of population samples of 18 nuclear Sanger sequence markers (but no mitochondrial markers), estimated with *BEAST. Trees are drawn in DensiTree with individual trees represented by very thin lines, making up tree densities, and main topology highlighted with a distinct blue line. Posterior probabilities higher than 0.6 are stated along the branches (* = 1.0). Clade names are referred to in the text. Populations of *C. teneriffae* and *C. caeruleus* are referred to by their geographical origin.

Figure S3. Demographic reconstruction of African Blue Tit *Cyanistes teneriffae* populations using Extended Bayesian Skyline Plots based on multi-locus Sangers sequence data. Solid lines represent mean estimated scaled population size (effective population size *x* generation time in My), and shaded areas the 95 % highest posterior density. Populations are indicated with abbreviations and island taxa are drawn in blue/green whereas mainland populations are drawn in red/brown/grey. (a) Eastern Canary Islands: Fuerteventura (Fue; blue) and Lanzarote (Lan; green), (b) Northwest Africa: Morocco (MAR; red) and Algeria (DZA; brown), (c) central Canary Islands: Gran Canaria (Can; green) and El Hierro (Hie; blue), (d) central Canary Islands: La Gomera (Gom; green) and Tenerife (Ten; blue), (e) La Palma (Pal; blue) and Libya (LIB; red), (f) European populations: Spain (ESP; red), Great Britain (GBR; grey), and Sweden (SWE; brown). Note that the last panel (f) has a different scale of the y axis. This figure is based on the same analyses as Figure 3, but covers the full period of time covered by demographic reconstructions.

Figure S4. Demographic reconstruction of African Blue Tit *Cyanistes teneriffae* populations using Extended Bayesian Skyline Plots based on multi-locus Sangers sequence data. Solid lines represent mean estimated scaled population size (effective population size *x* generation time in My), and shaded areas the 95 % highest posterior density. Populations are indicated with abbreviations and island taxa are drawn in blue/green whereas mainland populations are drawn in red/brown/grey. (a) Eastern Canary Islands: Fuerteventura (Fue; blue) and Lanzarote (Lan; green), (b) Northwest Africa: Morocco (MAR; red) and Algeria (DZA; brown), (c) central Canary Islands: Gran Canaria (Can; green) and El Hierro (Hie; blue), (d) central Canary Islands: La Gomera (Gom; green) and Tenerife (Ten; blue), (e) La Palma (Pal; blue) and Libya (LIB; red), (f) European populations: Spain (ESP; red), Great Britain (GBR; grey), and Sweden (SWE; brown). Note that the last panel (f) has a different scale of the y axis. This figure is based on the same analyses as Figure 3, but is zoomed in to make clear the demographic developments during relatively recent times.

Figure S5. Phylogenomic maximum likelihood tree of blue tits *Cyanistes* sp. calculated in RAxML of supermatrix STRICT, comprising 11,426 restriction-site associated DNA (RAD) sequences (994 Kbp) from all individuals, with no tolerance for missing data. In the sequence names, "a" and "b" signify the two "alleles" produced by randomly combining alleles from each individual RAD locus. Bootstrap support >50 displayed at nodes; clades referred to in the text; outgroups not shown. Note the within-sample genetic variation, translated as long branches, for samples from Lanzarote and Tenerife, believed to be artefactual (see text).

Figure S6. Cluster assignment using multi-dimensional scaling (MDS). Main clades (see text) and some single populations (italic) are labeled. Clade A holds European populations of *Cyanistes caeruleus* (dark blue) and Asian *C. cyanus* (cyan blue); clade B3 contains *C. teneriffae* of the central Canary Islands (purple); clade B4 comprises the eastern Canary Islands (including Lanzarote) and northwest Africa (green); Libya is drawn in orange; La Palma in red.

Supplementary references

- Backstrom N, Fagerberg S, Ellegren H (2008) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. *Mol Ecol* **17**, 964-980.
- Baird NA, Etter PD, Atwood TS, *et al.* (2008) Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. *PLoS One* **3**.
- Dietzen C, Garcia-del-Rey E, Castro GD, Wink M (2008) Phylogeography of the blue tit (Parus teneriffae-group) on the Canary Islands based on mitochondrial DNA sequence data and morphometrics. *Journal of Ornithology* **149**, 1-12.
- Etter PD, Bassham S, Hohenlohe PA, Johnson EA, Cresko WA (2011) SNP discovery and genotyping for evolutionary genetics using RAD sequencing. *Methods Mol Biol* **772**, 157-178.

- Fregin S, Haase M, Olsson U, Alstrom P (2009) Multi-locus phylogeny of the family Acrocephalidae (Aves: Passeriformes) The traditional taxonomy overthrown. *Mol Phylogenet Evol* **52**, 866-878.
- Friesen V, Congdon B, Kidd M, Birt T (1999) Polymerase chain reaction (PCR) primers for the amplification of five nuclear introns in vertebrates. *Mol Ecol* **8**, 2147-2149.
- Helm-Bychowski K, Cracraft J (1993) Recovering Phylogenetic Signal from DNA-Sequences -Relationships within the Corvine Assemblage (Class Aves) as Inferred from Complete Sequences of the Mitochondrial-DNA Cytochrome-B Gene. *Mol Biol Evol* **10**, 1196-1214.
- Kocher TD, Thomas WK, Meyer A, *et al.* (1989) Dynamics of Mitochondrial-DNA Evolution in Animals -Amplification and Sequencing with Conserved Primers. *Proc Natl Acad Sci U S A* **86**, 6196-6200.
- Kvist L, Ruokonen M, Lumme J, Orell M (1999) Different population structures in northern and southern populations of the European blue tit. *Journal of Evolutionary Biology* **12**, 798-805.
- Li N, Stephens M (2003) Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. *Genetics* **165**, 2213-2233.
- Prager EM, Sage RD, Gyllensten U, *et al.* (1993) Mitochondrial-DNA Sequence Diversity and the Colonization of Scandinavia by House Mice from East Holsten. *Biological Journal of the Linnean Society* **50**, 85-122.
- Primmer C, Borge T, Lindell J, Saetre G (2002) Single-nucleotide polymorphism characterization in species with limited available sequence information: High nucleotide diversity revealed in the avian genome. *Mol Ecol* **11**, 603-612.